空调用冷水机组部分负荷性能与空调系统的匹配分析
简介: 本文分析研究了反映空调用冷水机组在部分负荷运行时的综合性能相关参数, 讨论了不同部分负荷性能冷水机组的能耗评价方法和节能潜力,划分了冷水机组在不同负荷段的部分负荷性能与全负荷性能的关系,指出美国空调与制冷学会标准(ARI-550/590-98)中提出的综合部分负荷性能系数IPLV的技术意义及其变化, 提示了制冷系统的设计与运行能耗与空调动态负荷的相关性,给出了空调用冷水机组部分负荷性能与空调系统匹配的基本思路。
关键字:冷水机组 部分负荷性能 空调系统 匹配
在空调工程中,制冷系统的设计、安装和运行对整个空调系统的能耗影响很大。随着我国经济的快速发展,空调的使用日趋广泛,空调面积数量大幅度上升,各类式、水冷式甚至蒸发式的冷水机组已经成为空调用冷源的主力军,冷水机组的能耗也越来越大,采用合理、科学和经济的设计、选型和运行方案,就成为降低冷水机组消耗的关键问题。
空调用冷水机组的全年运行能耗与冷水机组的性能有关,而冷水机组的性能主要包括全负荷性能和部分负荷性能,两者在选择和匹配冷水机组时均起着重要的作用。由于空调系统的冷负荷总是随室外气象参数扰动和室内状态的改变而变化的,在供冷期间空调系统在部分负荷下运行的时间较多,所以冷水机组的实际运行过程中大部分时间都是处于部分负荷运行状态,因此冷水机组部分负荷时的性能对其运行能耗的影响是很大的。研究冷水机组、空调系统的部分负荷特性及其相互之间的匹配关系,对于挖掘空调制冷总能系统的节能潜力无疑是十分重要的。
1冷水机组部分负荷综合性能参数
在规定的名义工况条件下,冷水机组的制冷量与能耗之比称为冷水机组的能效比EER(Energy Efficiency Ratio),它是标志冷水机组能耗的重要指标。在上个世纪的八十年代,节能研究的重点一直集中在如何提高冷水机组的EER。但是,EER所表示的仅仅是名义工况条件下的能耗。随着系统负荷的减少,它会大幅度的下降。例如某机组,在100%负荷(满负荷)时,它的EER是3.0左右的话,当系统调节为40%附近的负荷率时,EER已经降为1.4了。事实上,系统负荷与冷水机组的制冷量完全匹配的情况几乎是没有的。为此,必须考虑冷水机组在各种负荷下综合能耗。季节能效比SEER(Seasonal Energy Efficiency Rate) 和由美国空调与制冷学会标准(ARI—550/590 –98)中提出的综合部分负荷性能系数IPLV(Integrate Partial Load Value)来评价不同类型冷水机组在整个空调季节中的综合性能,可以更准确的反映冷水机组的能耗。这里重点分析综合部分负荷性能系数IPLV。
冷水机组的部分负荷性能一般是以名义工况输入功率百分数和名义工况制冷量的百分数来表示。一般来说,冷水机组的部分负荷性能大致可以有在整个负荷段冷水机组的全负荷性能好于、差于部分负荷性能和部分负荷段好于、部分负荷段差于部分负荷性能这三种情况。由于冷水机组的实际运行情况(串、并联台数;负荷调节方法;地理位置和建筑特点;室内外参数条件和机组运行方案)是有较大差异的,难以准确作出冷水机组的负荷特性曲线,需要寻求一个能描述不同类型冷水机组共同的部分负荷性能评价指标。综合部分负荷性能系数的概念是最早于1986年首先提出来的,后来经过多次修改完善,形成了美国空调与制冷学会ARI550-92《离心式和回转式冷水机组》以及ARI590-92《容积式冷水机组》两个标准中规定的综合部分负荷性能系数IPLV(Integrate Partial Load Value),在部分负荷下求得制冷性能系数,再按加权系数公式计算出冷水机组部分负荷性能值,主要反映冷水机组的部分负荷调节功能。这一方程是对于提供冷水机组平均负荷性能的一种进展,使得这一指标能够准确地描述在一个标准年周期内冷水机组运转的实际过程,这样就可以通过扩展的计算机数据分析用来解决冷水机组在不同地理区域和不同应用场合中的模型问题,而不是针对单机平均值的概念。按照部分负荷ARI550-92《离心式和回转式冷水机组》以及ARI590-92《容积式冷水机组》两个标准中规定的综合部分负荷性能系数IPLV的计算公式为:
IPLV = 0.17A + 0.39 B + 0.33 C + 0.11 D
其中A、B、C、D分别是冷水机组在100%、75%、50%和25%负荷下的EER或COP.
方程式中的系数是冷水机组在评价负荷点运行时的权重系数.
由于在通常情况下, 冷水机组满负荷的运行时间不到总运行时间的3%,其绝大部分时间都是在部分负荷下运行,因此冷水机组的负荷特性就成为衡量冷水机组性能优劣的一个十分重要的指标。可以看到,综合部分负荷性能系数IPLV是在25%、50%、75%部分负荷及满负荷情况下的COP或EER的加权平均值,它为衡量冷水机组的部分负荷特性提供了很好的依据。比如说比较不同类型的冷水机组、同类型不同厂家的冷水机组、同类型同厂家运用在不同地区或和不同类型建筑及空调的冷水机组、不同类型机组组合方式等,等于提供了一个技术平台,规定了相应的测试工况和技术标准。
经过一段试验运作后,美国空调与制冷学会ARI又于1998年推出了新的标准(ARI—550/590 –98),将所有采用蒸气压缩式制冷循环的冷水机组统一为一个相同的部分负荷评价标准,提出了新的IPLV计算公式[1]:
IPLV = 0.01A + 0.42 B + 0.45 C + 0.12 D
新标准有了较大的变化,其中部分负荷加权系数的基准由原来取自美国佐治亚州的亚特兰大市、对象是办公大楼,变为以美国29个城市(25年当中美国的冷水机组有80%销售在这些城市)的平均气候作为基础,并以大部分建筑类型(基于DOE的研究)作为评价对象。旧标准以小时数的直线平均定义评价负荷点,新标准改为冷吨-运行小时数。98标准提供了更加宽广范围的运行条件,可以用来表述每一种冷水机组应用的平均值,而不是针对某一种特殊设施条件下的状况,例如可以利用详尽的分析来反映实际气象资料、建筑物的负荷特性、冷水机组的数量、运行小时数、经济优化能力和使用水泵、冷却塔等辅机的能量。另外许多冷水机组都是在非标准工况条件下选择和使用的,统一为使用蒸气压缩式制冷循环的冷水机组,也反映了冷水机组容量确定和测试的变化,在比较实际工程中的设施时,这些变化更能真实地反映冷水机组的性能。
参考美国空调与制冷学会计算综合部分负荷性能系数IPLV的有关标准,国内制冷空调界也作了大量工作,适应我国具体国情和技术现状的有关行业标准已经制定和正在制定。通过借鉴美国空调与制冷学会计算综合部分负荷性能系数IPLV的计算方法,运用于工程实际和科学研究,如通过计算部分负荷性能系数正确选择不同类型冷水机组[2][3];运用部分负荷计算的思路对并联机组与空调动态负荷匹配的研究[4];根据部分负荷性能合理选择冷水机组台数[5];对和水冷机组的运行能耗进行分析[6];不同类型机组在主从机组配置条件下部分负荷对运行能耗的影响评价[7];燃气发动机驱动热泵型冷热水机的部分负荷分析[8];制冷装置部分负荷时冷却水系统的节能[9];ARI标准与我国相应标准的比较研究[10][11],部分负荷性能的研究已经引起了业内专业人员的注意。
2冷水机组部分负荷与空调动态负荷的相关性
根据空调专业的理论基础、仿真实验和实际运行经验,空调系统不可能总在设计负荷下运行,随着室内外负荷和扰动的变化,空调系统的冷负荷是在不断的发生变化的,空调系统实际上就是一个动态的部分负荷率随变系统。有统计说明,空调夏季设计日部分负荷出现的时间比率为,低于70%的部分负荷运行时间占全天运行时间的63% 图1表明了室外气象条件变化对空调系统的动态负荷变化以及对冷水机组的制冷负荷的改变的影响,另外空调系统因为是空调用冷水机组的需求側,两个系统的负荷关系是一个强相关关系。
冷水机组的制冷量应与空调负荷要求的冷量一致,使制冷剂在蒸发器内吸收的热量正好等于空调负荷的热量,此时的机组工作点称为平衡点。事实上,冷水机组的产冷能力和负荷都随外部条件变化。如图2,随室外气温的变化,冷水机组的制冷量和空调房间的负变化趋势相反。在两条曲线交点A处,制冷量等于空调荷,A为平衡点。在A点的左侧,冷水机组的制冷量大于空调房间的负荷,阴影部分表示了冷量的过剩;A点的右侧,冷量小于负荷,阴影部分表示了冷量的不足。工程上总是依最大负荷情况选择空调设备组成空调系统,因此空调设备经常处于A点左侧工作区,满负荷工作的时间一般只有10~20%。机组制冷量的过剩将使制冷剂在蒸发器内不能充分蒸发,达不到规定的过热度,将引起热力膨胀阀关小,制冷剂流动阻力增大,流量下降,机组的制冷量下降,直到与负荷达到平衡。
3.空调系统和冷水机组的优化匹配
空调动态负荷分析是冷水机组优化配置的基础。由于不同的建筑物有着不同的符合特性,比如最大负荷、最小负荷、负荷分布和符合频率等,这些都影响着冷水机组的容量和数目的选择,更重要的是影响两个系统在部分负荷情况下的匹配关系[12]。根据空调动态负荷的计算分析方法,基于对一定的空调负荷率对应的时间頻数的原理,以空调动态逐时负荷中总量、最大量、均值和部分负荷性能来匹配合适的冷水机组,制定恰当的运行方案,对于保证空调用冷水机组在部分负荷条件下的有效可靠运行十分重要。文献[13]中对上海市某高层建筑的运行仿真实验表明,如果冷水机组与目标建筑物的空调系统实现优化匹配,就可能产生明显的节能效果。文献[14]以一个实现变风量空调的厂房为例,分析了VAV空调水系统在变水量VWV情况下,当部分负荷时,变频调速水泵调节水量与机组性能和能耗的关系。在工程上有较多的实例运用水流量调节、冷水机组台数和部分负荷调整的方法使得冷水机组能够高效运行。
从空调用冷水机组和空调系统的耦合关系来看,作为一个总能系统,冷水机组、冷却水泵、水泵、冷却塔和空调表面构成了相互依存关系,合理选择相关设备装置,以保证在部分负荷下也具有较高的运行效率,从而减少全年运行的能耗,是需要引起充分注意的。
参考文献
[1] ARI Standard 550/590-98,Standard for Water Chilling Packages Using the Vapor Compression Cycle,1998,Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, Va.22203, U.S.A.
[2] 曹琦,张华. 暖通空调, 1996, 26 (6): 58 ~ 60
[3] 卫宇. 制冷技术, 2000, (1): 14 ~ 17
[4] 赵加宁, 周巧航, 施雪华. 哈尔滨商业大学学报(自然科学版), 2002, 18 (3): 353 ~ 357
[5] 丁云飞, 马最良. 哈尔滨建筑大学学报, 2001, 34 (2): 87 ~ 89
[6] 丁云飞, 简兆良. 制冷, 1999, 18 (4): 76 ~ 79
[7] 丁云飞. 节能. 2000, (1): 3 ~ 5
[8] 耿惠彬. 制冷技术, 2003, (1): 16 ~ 20
[9] 张建一. 制冷与空调, 2002, 2 (1): 58 ~60
[10] 刘莹, 郑贤德, 许新明. 制冷, 2000, 19 (4): 63 ~ 67
[11] 卫宇. 暖通空调, 2000, 30 (4): 67 ~ 69
[12] 周一芳, 周邦宁. 暖通空调, 2002, 32 (6): 101 ~ 103
[13] 南赋, 夏凊, 于航. 节能, 2001, (2): 15 ~ 18
[14] 胡益雄, 袁锋. 长沙铁道学院学报, 2001, 19 (4): 60 ~ 64
- 1《道路勘测设计》外业实习指导书
- 2湛江某海湾大桥(投标)施工组织设计
- 3[深圳]高层医疗建筑管道安装施工方案(创鲁班奖)
- 4新型混凝土增强剂的开发推进节能减排
- 5某土地整理工程水渠工程施工组织设计21p
- 6长大公路隧道施工过程质量控制检测体系的建立与实践
- 7上海科技馆预应力施工技术
- 8详解混凝土防冻剂配方以及制备方法
- 9钢筋电渣压力焊接头验收规定
- 10房地产估价师《制度与政策》复习指导:计价方式
- 11临港钢结构安装方案
- 12[湖北]旧桥拆除专项安全施工方案(含6座桥)
- 132013年连云港造价工程师报名时间为7月5日-7月18日
- 14搅拌机拖泵应用范围
- 15广州地铁单双线并行段数值模拟分析
- 16某办公楼土建水电工程施工组织设计 200p
- 17复合坚硬岩石巷道塌陷段监控的研究与应用
- 18高性能聚羧酸减水剂的合成与应用性能研究
- 19外商投资项目核准申请报告的咨询评估
- 202013年河北瓷质砖产量分月度统计
- 21点支式玻璃幕建筑结构设计分析中的若干问题
- 22复合钢格板3mm
- 232013年大同造价工程师报名入口
- 24职业技术学校新校区文科理科实训楼工程施工组织设计
- 25湖南搅拌拖泵投资分析
- 26机械钻孔桩和旋挖桩有什么不同
- 27防水专家金耐德
- 28隧道岩溶断层突水涌泥综合整治技术
- 29施工预防监控措施和应急预案
- 30质量管理创新
成都公司:成都市成华区建设南路160号1层9号
重庆公司:重庆市江北区红旗河沟华创商务大厦18楼